Binomiális táblázat n = 2, n = 3, n = 4, n = 5 és n = 6 esetében

Az egyik fontos diszkrét véletlen változó egy binomiális véletlen változó. Az ilyen típusú binomiális eloszlásnak nevezett változó eloszlását két paraméter határozza meg teljesen: n és o. Itt n a kísérletek száma és p a siker valószínűsége. Az alábbi táblázatok a következőkre vonatkoznak: n = 2, 3, 4, 5 és 6. Az egyes valószínűségeket három tizedesjegyre kerekítjük.

A táblázat használata előtt fontos meghatározni ha binomiális eloszlást kell használni. Az ilyen típusú disztribúció használatához meg kell győződnünk arról, hogy a következő feltételek teljesülnek:

  1. Végtelen számú megfigyelés vagy kísérlet van.
  2. A tanítási próba eredményét sikerként vagy kudarcként lehet besorolni.
  3. A siker valószínűsége állandó marad.
  4. A megfigyelések függetlenek egymástól.

A binomiális eloszlás megadja a valószínűségét r sikerek egy kísérletben összesen n független kísérletek, amelyek mindegyikének valószínűsége van a sikernek p. A valószínűségeket a képlettel számítják ki C(n, r)pr(1 - p)n - r hol C(n, r) a képlet kombinációk.

instagram viewer

A táblázat minden bejegyzését a következő értékek szerint rendezzük el p és r. Minden értékhez külön táblázat van n.

Egyéb táblák

Egyéb binomiális eloszlási táblák esetén: n = 7–9, n = 10-11. Olyan helyzetekre, amelyekben np és n(1 - p) 10-nél nagyobb vagy egyenlő, használhatjuk a a binomiális eloszlás normál közelítése. Ebben az esetben a közelítés nagyon jó, és nem igényli a binomiális együtthatók kiszámítását. Ez nagy előnyt jelent, mivel ezek a binomiális számítások nagyon részt vehetnek.

Példa

A táblázat használatának megismeréséhez a következő példát vesszük figyelembe genetika. Tegyük fel, hogy érdekel két olyan szülő utódjainak tanulmányozása, akikről tudjuk, hogy mindkettőnek recesszív és domináns génje van. 1/4 annak a valószínűsége, hogy egy utód a recesszív gén két példányát örököli (és így recesszív tulajdonsággal rendelkezik).

Tegyük fel, hogy meg akarjuk vizsgálni annak valószínűségét, hogy egy hat tagú családban bizonyos számú gyermek rendelkezik ezzel a tulajdonsággal. enged x legyen a gyermekek száma e vonással. Az asztalra nézünk n = 6 és az oszlop p = 0,25, és nézze meg a következőt:

0.178, 0.356, 0.297, 0.132, 0.033, 0.004, 0.000

A példa erre azt jelenti

  • P (X = 0) = 17,8%, ami annak a valószínűsége, hogy egyik gyermek sem rendelkezik recesszív tulajdonsággal.
  • P (X = 1) = 35,6%, ami annak a valószínűsége, hogy a gyermekek egyikének recesszív tulajdonsága van.
  • P (X = 2) = 29,7%, ami annak a valószínűsége, hogy a gyermekek közül kettőnek recesszív vonása van.
  • P (X = 3) = 13,2%, ami annak a valószínűsége, hogy három gyermeknek recesszív vonása van.
  • P (X = 4) = 3,3%, ami annak valószínűsége, hogy négy gyermeknek recesszív vonása van.
  • P (X = 5) = 0,4%, ami annak a valószínűsége, hogy a gyermekek közül ötnek recesszív vonása van.

N = 2 - n = 6 táblázatok

n = 2

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .980 .902 .810 .723 .640 .563 .490 .423 .360 .303 .250 .203 .160 .123 .090 .063 .040 .023 .010 .002
1 .020 .095 .180 .255 .320 .375 .420 .455 .480 .495 .500 .495 .480 .455 .420 .375 .320 .255 .180 .095
2 .000 .002 .010 .023 .040 .063 .090 .123 .160 .203 .250 .303 .360 .423 .490 .563 .640 .723 .810 .902

n = 3

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .970 .857 .729 .614 .512 .422 .343 .275 .216 .166 .125 .091 .064 .043 .027 .016 .008 .003 .001 .000
1 .029 .135 .243 .325 .384 .422 .441 .444 .432 .408 .375 .334 .288 .239 .189 .141 .096 .057 .027 .007
2 .000 .007 .027 .057 .096 .141 .189 .239 .288 .334 .375 .408 .432 .444 .441 .422 .384 .325 .243 .135
3 .000 .000 .001 .003 .008 .016 .027 .043 .064 .091 .125 .166 .216 .275 .343 .422 .512 .614 .729 .857

n = 4

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .961 .815 .656 .522 .410 .316 .240 .179 .130 .092 .062 .041 .026 .015 .008 .004 .002 .001 .000 .000
1 .039 .171 .292 .368 .410 .422 .412 .384 .346 .300 .250 .200 .154 .112 .076 .047 .026 .011 .004 .000
2 .001 .014 .049 .098 .154 .211 .265 .311 .346 .368 .375 .368 .346 .311 .265 .211 .154 .098 .049 .014
3 .000 .000 .004 .011 .026 .047 .076 .112 .154 .200 .250 .300 .346 .384 .412 .422 .410 .368 .292 .171
4 .000 .000 .000 .001 .002 .004 .008 .015 .026 .041 .062 .092 .130 .179 .240 .316 .410 .522 .656 .815

n = 5

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .951 .774 .590 .444 .328 .237 .168 .116 .078 .050 .031 .019 .010 .005 .002 .001 .000 .000 .000 .000
1 .048 .204 .328 .392 .410 .396 .360 .312 .259 .206 .156 .113 .077 .049 .028 .015 .006 .002 .000 .000
2 .001 .021 .073 .138 .205 .264 .309 .336 .346 .337 .312 .276 .230 .181 .132 .088 .051 .024 .008 .001
3 .000 .001 .008 .024 .051 .088 .132 .181 .230 .276 .312 .337 .346 .336 .309 .264 .205 .138 .073 .021
4 .000 .000 .000 .002 .006 .015 .028 .049 .077 .113 .156 .206 .259 .312 .360 .396 .410 .392 .328 .204
5 .000 .000 .000 .000 .000 .001 .002 .005 .010 .019 .031 .050 .078 .116 .168 .237 .328 .444 .590 .774

n = 6

p .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95
r 0 .941 .735 .531 .377 .262 .178 .118 .075 .047 .028 .016 .008 .004 .002 .001 .000 .000 .000 .000 .000
1 .057 .232 .354 .399 .393 .356 .303 .244 .187 .136 .094 .061 .037 .020 .010 .004 .002 .000 .000 .000
2 .001 .031 .098 .176 .246 .297 .324 .328 .311 .278 .234 .186 .138 .095 .060 .033 .015 .006 .001 .000
3 .000 .002 .015 .042 .082 .132 .185 .236 .276 .303 .312 .303 .276 .236 .185 .132 .082 .042 .015 .002
4 .000 .000 .001 .006 .015 .033 .060 .095 .138 .186 .234 .278 .311 .328 .324 .297 .246 .176 .098 .031
5 .000 .000 .000 .000 .002 .004 .010 .020 .037 .061 .094 .136 .187 .244 .303 .356 .393 .399 .354 .232
6 .000 .000 .000 .000 .000 .000 .001 .002 .004 .008 .016 .028 .047 .075 .118 .178 .262 .377 .531 .735